Doc.No. 032013-N116

Flux cored filler rod for Normal Duplex Stainless Steel

TG-X2209

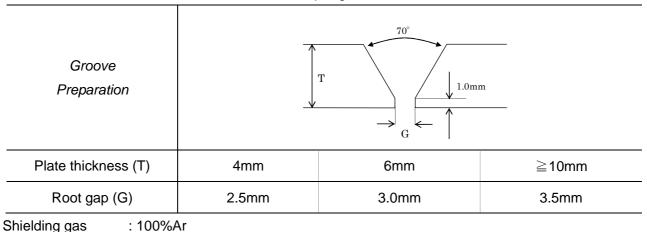
Flux cored filler rod for Normal Duplex Stainless Steel ; TG-X2209

KOBE STEEL, LTD. WELDING BUSINESS

TG-X2209 is flux cored filler rod designed for root pass welding of 22Cr type duplex stainless steels such as S31803 and S32205.

TG-X2209 can eliminate gas purging for back shielding root pass weld in one-side TIG pipe welding.

1 General instruction


1.1 Product specification

Product name	Product size	Classification
FIGULEINAME	(Diameter ×Length)	Classification
TG-X2209	2.2mm ϕ $ imes$ 1000mm	None

Table 1-1 Product specification

1.2 Characteristics on Usage

Usability of TG-X2209 is almost same as conventional TG-X series. In order to get good bead shape of root pass, root gap has to be wider by 0.5~1.0mm compared to conventional TG-X series.

Back shielding gas: Not needed

Slag composition : Composite oxide. Ti, Ca, and Si etc.

2 Properties of all-weld metal

All-weld metal was produced, and its chemical composition, mechanical properties and corrosion resistance were evaluated.

2.1 Welding conditions

Welding conditions in producing all-weld metal are shown in Table 2-1.

Welding wire	TG-X2209, 2.2mm ∅	
Polarity	DCEN	
Welding position	Flat	
Welding current	200A	\setminus 45° /
Arc voltage	14V	
Welding speed	12-14cm/min	
Heat input	12-14kJ	SM490A
Shielding gas	100%Ar 15L/min	
Preheat	RT	6.5mm
Inter-Pass temperature	<150°C	Beveled surface is buttered by TG-X2209.
Pass sequence	8layers-16 passes	

Table 2-1 Welding conditions for all-weld metal

2.2 Chemical compositions of all-weld metal

Chemical compositions of all-weld metal are presented in Table 2-2.

	С	Si	Mn	Р	S	Cu	Ni	Cr
TG-X2209	0.015	0.64	0.87	0.015	0.003	0.03	9.48	23.06

Table 2-2 Chemical composition (%), PRE and ferrite content of all-weld metal

	Мо	Nb	N	PRE	FNW	FF
TG-X2209	3.34	0.018	0.15	36.5	47	41

PRE: Cr+3.3Mo +16N

FNW: Ferrite Number (FN) by WRC1992 Diagram

FF: Ferrite Number (FN) by Ferrite Scope (Fischer Ferrite Scope MP-30)

(Average value among 10 measurements)

2.3 Tensile properties of all-weld metal

Tensile test result conducted at ambient temperature 20°C is presented in Table 2-3.

_						
-		0.2% P.S.	T.S.	EL		
_		(MPa)	(MPa)	(%)		
-	TG-X2209	603	811	32		

Table 2-3 Tensile properties of all-weld metal

(Diameter: 6.0mm, G.L.: 24.0mm)

2.4 Charpy impact properties of all-weld metal

Charpy impact tests (10 x 10mm, 2mm.-V notch) were conducted at -50°C. Absorbed energy is presented in Table 2-4.

Table 2-4 Absorbed Energy at Charpy impact test

	Test temp at -50 $^\circ\!C$
TG-X2209	139, 135, 139 Avg. 138J

2.5 Pitting Corrosion Test of all-weld metal -ASTM G48 Practice E-

Critical Pitting Temperature (CPT) was determined as 25°C by ASTM G48 Practice E "Critical pitting temperature test for stainless steels".

Table 2-5 Pitting Corrosion Test result by G48 E				
Size of	Test Solution	Time of	CPT	
Specimen	Test Solution	exposure	OF I	
3 x 10 x 75mm	6%FeCl3 + 1%HCl	24 hrs	25 ℃	
<u> </u>	solution aq.	241115	230	

Table 2 5 Ditting Com aalan Taat

3 Properties of butt weld joint

V-groove butt weld joint of Normal duplex stainless steels were produced by TG-X2209 and filler solid wire TG-S2209 (AWS A5.9/5.9M ER2209) at flat position. TG-X2209 was used for root pass welding and TG-S2209 was used for the other passes.

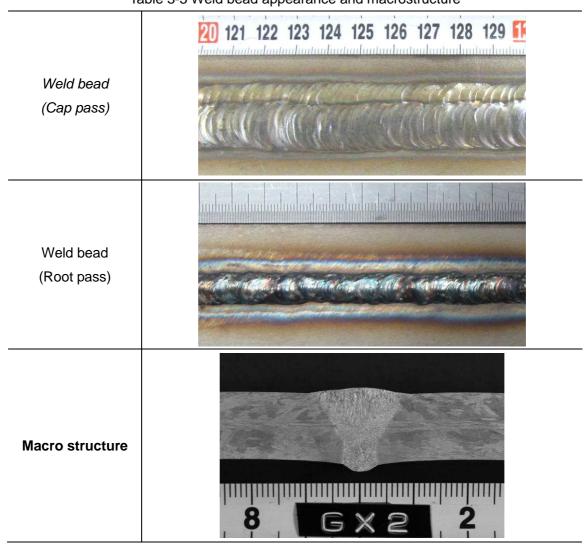
3.1 Base metal and TIG Wire

	С	Si	Mn	Р	S	Cu	Ni	Cr
Base metal S31803	0.011	0.59	1.80	0.024	<0.0005	0.15	5.79	22.70
TG-S2209	0.015	0.39	1.69	0.017	0.0014	0.10	8.66	22.57

Table 3-1 Chemical compositions (%) of base metal and TIG wire

	Мо	Nb	Ν	PRE	FNW
Base metal	3.07	0.012	0.17	35.6	
S31803	3.07	0.012	0.17	35.0	-
TG-S2209	3.07	<0.005	0.17	35.4	44

PRE: Cr+3.3Mo +16N FNW: Ferrite Number (FN) by WRC1992 Diagram


3.2 Welding conditions

Layer	1 st	2 nd ~6 th	Groove configuration
Welding wire	TG-X2209 2.2mm φ	TG-S2209 2.4mm φ	70°
Welding current	100A	150A	
Arc voltage	11V	12V	$\frac{7}{5}$
Welding speed	4cpm	7-10cpm	
Heat input	17kJ/cm	10-16kJ/cm	12mm
Shielding gas	100%Ar	15L/min	1 1mm
Back Shielding gas	None		3mm
Polarity	DC	EN	6layers-10passes
Welding position	Flat		liayers-ropasses
Preheat	RT		
Inter-Pass	-16	50°C	
temperature	<10		

Table 3-2 Welding condition

3.3 Appearance and cross sectional view of weld joint

Weld bead appearance and macro structure of cross section of weld joint are presented in Table 3-3. Ferrite number (FN) measured by Ferrite Scope is also shown in Table 3-4. Average value among 10 measurements is reported.

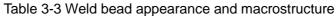


Table 3-4 Ferrite Number measured by Ferrite Scope (FN)

Cap pass	52
Root	31
pass	

3.4 Radiographic test of weld joint

Weld joint was subject to radiographic test to evaluate the soundness of the weld metal. Both ends were exempt and 250mm length of the center of the weld bead was evaluated.

Table 3-5 Radiographic test			
Liner indication Round indication			
None	<1.0mm×2		

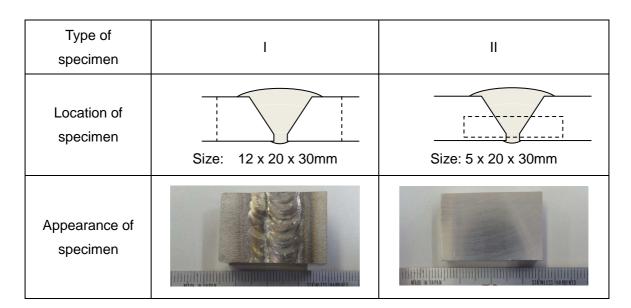
3.5 Side-bend test of weld joint

Side-bend test was conducted in accordance with AWS B4.0/4.0M with the test piece thickness, t=9.5mm as bending radius is equal to 2t. Test piece was bended 180 degrees. The results are shown in Table 3-6.

Table 3-6 Side bend test result					
Bended specimen	Defect	Result			
	None	Satisfactory			

3.6 Transversal tensile test of weld joint

Transverse tensile test was conducted.


Table 3-7 Transverse tensile test result

Size	Tensile stress (MPa)	Fractured location	Appearance of test specimen
12.7mm x 38mm (t x w)	816	Base metal	

3.7 Pitting Corrosion Test of weld joint

The test was according to ASTM G48 Practice E *"Critical pitting temperature test for stainless steels"* <u>Two test specimens</u> were sampled from the area including weld metal, HAZ, and base metal. Test result is shown in Table 3-8.

Test Solution	Time of exposure	Test temperature
6%FeCl3 + 1%HCl solution aq.	24 hrs	22 °C

Table 3-8 Pitting Corrosion Test result by G48

Type of	Corrosion rate			
specimen	(mdd)	(g/m² • h)		
I	35.8	0.149		
II	1.7	0.007		

Corrosion rate (mdd)=weight loss (mg) / [specimen area (dm²) x time (day)].

3.8 Microstructure of weld joint

Microstructures of weld joint are shown in Fig.3-1 and 3-2.

Location of observation

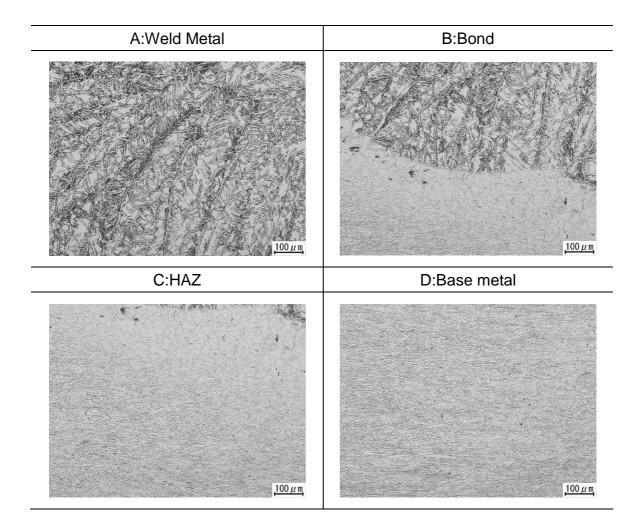
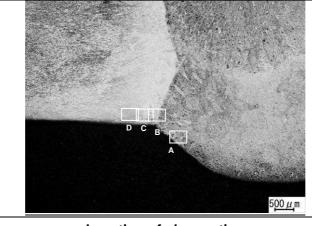



Fig.3-1 Microstructure of weld joint (Cap pass)

Location of observation

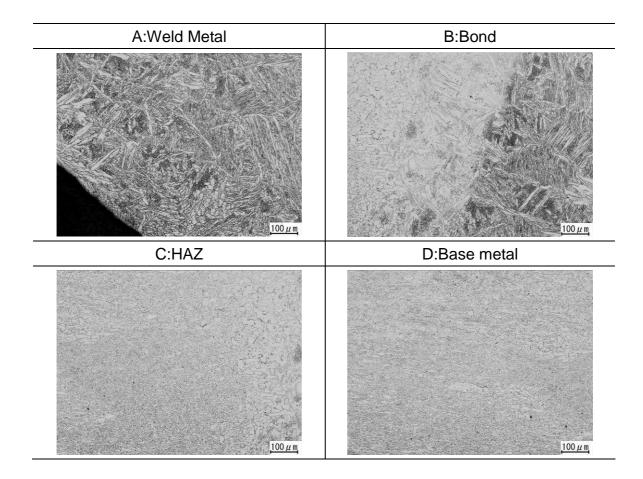


Fig.3-2 Microstructure of weld joint (Root pass)

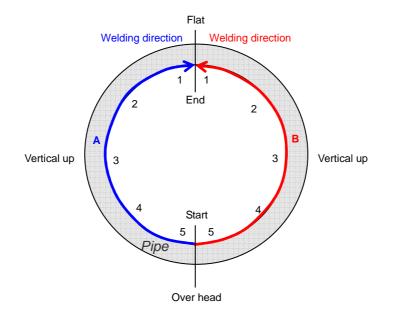
4 Properties of butt weld joint pipe

V-groove butt weld joint of Normal duplex stainless steels pipe were produced by TG-X2209 and TG-S2209 at all position. TG-X2209 was used for root pass welding and TG-S2209 was used for the other passes.

4.1 Base metal and TIG Wire

	С	Si	Mn	Р	S	Cu	Ni	Cr
Base metal S31803	0.023	0.59	1.72	0.025	<0.0005	0.10	5.24	22.50
TG-S2209	0.015	0.39	1.69	0.017	0.0014	0.10	8.66	22.57

Table 4-1 Chemical compositions(%) of	f base metal and TIG wire
---------------------------------------	---------------------------

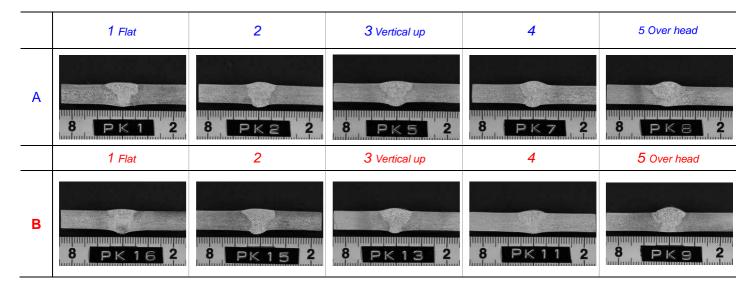

	Мо	Nb	Ν	PRE	FNW
Base metal S31803	3.29	<0.005	0.15	35.8	-
TG-S2209	3.07	<0.005	0.17	35.4	44

PRE: Cr+3.3Mo +16N FNW: Ferrite Number (FN) by WRC1992 Diagram

4.2 Welding condition

Layer	1st	2 nd	3 rd		
Welding wire	TG-X2209 2.2mm φ	TG-S2209 2.4mm φ	TG-S2209 2.4mm φ		
Welding current	90A	130A			
Arc voltage	11V	11V	11V		
Welding speed	5cpm	4cpm	4cpm		
Heat input	12kJ/cm	18kJ/cm	22kJ/cm		
Shileding gas		100%Ar 15L/min	1		
Back shielding gas	None				
Polarity	DCEN				
Welding position	All position				
Preheat	RT				
Inter-Pass temperature		<150℃			
Groove configuration	70° 3 7mm 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Table 4-2 Welding conditions


4.3 Appearance and cross sectional view of weld joint pipe

Appearance and macro structures of cross sections of weld joint pipe are presented in Figure 4-1 and Table 4-3.

Figure 4-1 Appearance of weld joint pipe

4.4 Ferrite number (FN) measured by Ferrite Scope

Ferrite number measured by Ferrite Scope are also shown in Table 4-4. Average values among 10 measurements are reported.

Measured position	1 Flat	2	3 Vertical up	4	5 Over head
Cap pass	40	37	38	40	39
Root pass	28	30	31	28	31

Table 4-4 Ferrite Number by Ferrite scope (FN)

5 Summary

- 1) TG-X2209 is flux cored filler rod designed for root pass welding of 22Cr type duplex stainless steels such as S31803 and S32205.
- 2) The outstanding feature of this product is to eliminate gas purging for back shielding root pass weld in one-side TIG pipe welding.
- 3) The usability of TG-X2209 is almost same as conventional TG-X series, and TG-X2209 can be applied to pipe welding at all positions.
- 4) By using Argon shielding gas, all-weld metal has sufficient tensile strength and practical resistance to pitting corrosion.

(Complete)